Worksheet for 2020-04-17

Conceptual Review
Question 1. Qualitatively describe the following parametric surfaces.
(a) $\mathbf{r}(u, v)=\langle u+v,-u, v\rangle$

Plane
(b) $\mathbf{r}(u, v)=\left\langle u^{2},-u, v\right\rangle$ for uconst: vertical lines
for v canst: horizontal parabolas
parabolic cylinder
(c) $\mathbf{r}(u, v)=\langle u \cos (2 v), v, u \sin (2 v)\rangle$ (you may see this surface again on an upcoming written HW)

There is a picture of this in $\S 16.5$ exercises; it is a "helical ramp"

Question 2': How to parametrize the curve $y=f(x)$: $\vec{r}(t)=\langle x, y\rangle=\langle t, f(t)\rangle$
Question 2. What is one way you could parametrize the graph of a function $f(x, y)$, in other words the surface defined by $z=f(x, y)$?

$$
\vec{r}(u, v)=\langle x, y, z\rangle=\langle u, \quad v, f(u, v)\rangle
$$

Question 3. Suppose that all of the u and v grid curves of a parametric surface $\mathbf{r}(u, v)$ are lines. Does it follow that the parametric surface must be a plane?

$$
\text { No, consider } \vec{r}(u, v)=\langle u, v, u v\rangle
$$

This is $z=x y$, a hyperbolic paraboloid

Problems
$x \quad y \quad z$
Problem 1. Find a normal vector to the plane $\mathbf{r}(u, v)=\langle u+v, u-v, 2 u\rangle$ by
(a) finding a Cartesian equation for the plane (i.e. a single equation of x, y, z) and reading off a normal vector from that.

$$
\begin{aligned}
& (u+v)+(u-v)-2 u=0 \\
& x+y-z=0 \quad \text { so a normal vec is: }\langle 1,1,-1\rangle
\end{aligned}
$$

(b) using the $\mathbf{r}_{u} \times \mathbf{r}_{v}$ method.

Problem 2. Consider the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ below the plane $z=3$. Compute its surface area (a) using calculus (ie. techniques from $\$ 16.5$).

$$
\begin{aligned}
& \left|\vec{r}_{u} \times \vec{r}_{v}\right|=\left|\begin{array}{lll}
\hat{i} & \hat{\jmath} & \hat{k}_{c} \\
1 & 0 & \frac{u}{\sqrt{u^{2}+v^{2}}} \\
0 & 1 & \frac{v}{\sqrt{u^{2}+v^{2}}}
\end{array}\right| \\
& =\sqrt{2} \text {. }
\end{aligned}
$$

(b) without using calculus. Hint: cut a slit in the cone and unfold it into a "pacman" shape.

$$
A_{\text {rex }}=18 \pi \cdot \frac{6 \pi}{4 \sqrt{2} \pi}=9 \pi \sqrt{2}
$$

